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Dynamics of drops in branched tubes 

By M I C H A E L  MANGAT 
Department of Geology & Geophysics, University of California, Berkeley, CA 94720, USA 

(Received 14 April 1995 and in revised form 10 January 1996) 

The flow of two-dimensional deformable drops through branching (bifurcating) tubes 
is studied numerically using a boundary integral formulation. The undeformed drop 
diameter is assumed to be less than the tube diameter. Capillary numbers between 
lo-’ and 1 are considered. Flow in the branching tube is characterized by the fraction 
of fluid which enters each of the two downstream branches. The likelihood of drops 
entering the high-flow-rate branch increases as (i) the viscosity ratio between the 
drops and suspending fluid decreases, (ii) the capillary number increases, and (iii) the 
drop size increases. Hydrodynamic interactions between the suspended drops increase 
the number of drops which enter the low-flow-rate branch. The implications of these 
results for dispersion processes and local transport are explored. The disturbance 
flow created by drops passing over ‘dead-end’ pores or cavities results in fluid transfer 
between the pore and the free stream; suspensions may then be effective in improving 
the ‘cleaning’ of porous materials. 

1. Introduction 
The flow of two or more immiscible fluids in a porous material occurs during the 

subsurface cleanup of organic contaminants, within oil reservoirs during oil and gas 
extraction, as well as in separation processes such as filtration. The non-wetting phase 
typically exists in the form of dispersed drops for volumes fractions of less than about 
20%. Here we study the motion of drops in branching tubes as a model for the flow 
of two immiscible fluids in a porous medium, and consider the limits in which the 
dispersed phase occurs in the form of drops with undeformed radii less than the tube 
radius. The geometry of the model problem is also characteristic of the motion of 
blood cells in branching capillaries. 

Consider a porous medium containing two immiscible fluids, as illustrated in 
figure 1. In order to develop both a qualitative and quantitative understanding of the 
dynamics which characterize the porous medium, studies focusing on length scales of 
the individual pores have considered three classes of model problems: the motion of a 
drop through a straight capillary, the motion and breakup of a drop passing through 
a contraction in a capillary, and finally, the motion of a drop through a branched 
capillary. These three model problems simulate dropwall interactions, changes in 
pore dimensions, and bifurcations of flow pathways, respectively. The overall goal of 
these studies has been to develop models which characterize macrophysical properties 
of the two-phase system, such as the effective viscosity, texture of the dispersed 
phase, and mechanical dispersion, in terms of microphysical properties such as drop 
size, the capillary number (relative magnitude of viscous to interfacial tension forces 

f Present address: Department of Geological Sciences, University of Oregon, Eugene, OR 97403, 
USA. 
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Drops for @ < 0.2 

FIGURE 1. Schematic illustration of droplets (dispersed non-wetting phase) in a porous material; 
4 is volume fraction of the dispersed phase (compared with the volume of the suspending fluid). 
Owing to the geometric complexity of typical porous materials, three model problems are often 
studied: (a) a drop in a straight capillary, ( b )  a drop in a constricted capillary, and ( c )  a drop in a 
branched capillary. This paper considers a two-dimensional version of model geometry (c ) .  

acting on the drop), and the viscosity ratio between the drop and surrounding fluid. 
For example, analytical (e.g. Bretherton 1961; Brenner 1971; Ratulowski & Chang 
1989), numerical (e.g. Martinez & Udell 1990), and experimental (e.g. Ho & Leal 
1975) studies of a single drop in a straight capillary have determined the relationship 
between the pressure change across the drop and the relative drop size, the viscosity 
ratio and the drop velocity, so that a model for the effective viscosity of the two-phase 
system can be developed. While the model problems illustrated in figure l(u-c) are 
obviously greatly simplified models of an actual porous medium in which a variety 
of physicochemical processes may influence drop dynamics, the model problems do 
provide a starting point for studying certain pore-scale processes. 

A recent summary of research on drops and bubbles in straight and constricted 
capillaries, model problems (a)  and (b )  in figure 1, may be found in Tsai & Miksis 
(1994). Here we study drop motion in branched tubes (figure 1c) in order to study 
the effect of bifurcations on the motion of drops and the effect of drops on the local 
transport of passive tracers. Similar calculations for two-dimensional rigid particles 
have been presented by Audet & Olbricht (1987) and related low Reynolds number 
experimental work for two interacting rigid particles has been performed by Ditchfield 
& Olbricht (1995). Other numerical work includes lattice-Boltzman numerical simu- 
lations which allow very complex three-dimensional porous structures to be studied 
(e.g. Gunstensen & Rothman 1993; Adler 1992). While the relevant geometry is 
three-dimensional, owing to numerical limitations we will consider a two-dimensional 
model. A comparison of analytical (e.g. Chan & Leal 1979) and numerical (e.g. 
Zhou & Pozrikidis 1994) studies indicates that while certain quantitative differences 
exist between the motion and deformation of two-dimensional and three-dimensional 
neutrally buoyant drops in tubes and channels, qualitative features of the problem 
are largely unaffected. Although the two-dimensional approximation may restrict 
direct quantitative applications of the results, the simplifying assumption does allow 
us to perform a numerical study and consider the effects of drop size, viscosity ratio, 
geometry, and drop interactions on the motion of drops through branching tubes, 
and thus to develop at least a qualitative understanding of the problem.? 

t The author can provide animated videos of the calculations presented here. 
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Entrance 

FIGURE 2. Geometry of the model problem. 

2. Problem formulation 
The geometry of the model problem, consisting of a neutrally buoyant two- 

dimensional drop with viscosity Ap in a suspending fluid with viscosity p ,  is illustrated 
in figure 2. We denote the surface of the drop by S and the walls of the bounding 
tube by r .  The unit normal n is directed into the suspending fluid, and away from S 
and r .  Flow in the drop (volume vd) and suspending fluid (volume V,) satisfy Stokes 
equations 

and 

where the subscripts s and d denote the suspending fluid and dispersed phase, 
respectively, u is the fluid velocity, p is the fluid pressure, T is the stress tensor, and x 
is the position vector. Stokes equations are valid provided the Reynolds number 

V'  T d  = A / i v 2 U d  - v p d  = 0 (2.1) 

V * T , = p V 2 u , - V p , = 0  and V . u , = O  for X E V ,  (2.2) 

and v'ud = 0 for X E vd 

(2.3) 
P 

where U is a characteristic fluid velocity, R the capillary radius, and p the fluid 
density. The Reynolds number is typically small in geological porous material owing 
to small pore sizes as well as small fluid velocities. 

On the surface of the drop the velocity is continuous, 

us = ud for x E S .  (2.4) 

In the model problem considered here, the velocity of the suspending fluid is specified 
both at the entrance and the exits of the tube shown in figure 2. We impose a 
parabolic velocity profile, characteristic of Poiseuille flow, at all three orifices. The 
velocity of the fluid entering the branching tube from the left (see figure 2) is given 
by 

where r is the distance from the tube centreline. 
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Parameter Description 

a/  R dimensionless drop radius 
d / R  

Q 
1 viscosity ratio 
+? 

dimensionless drop offset from tube centerline 
flow through upper branch divided by total flow 

Capillary number, ratio of viscous to interfacial tension stresses 

TABLE 1. Dimensionless parameters: lengths are normalized by R and velocities by U (see figure 2).  

For a neutrally buoyant drop, the stress jump across the surface of the drop is 
given by 

where CT is the interfacial tension which is assumed constant. The effect of surfactants, 
which leads to an additional tangential component in the stress jump condition that 
depends on the gradient of interfacial tension, is discussed by Ratulowski & Chang 
(1990) and Borhan & Mao (1992). Owing to the small length scales which typically 
characterize the interfaces in the physical problems studied here, surfactant effects will 
probably play a significant role in actual porous media. Nevertheless, we will neglect 
the effects of surfactants in this paper. In the physical system, non-hydrodynamic 
forces due to electrostatic or intermolecular effects typically become important for 
separation distances less than about 10 nm. The coalescence and breakup of drops 
cannot be simulated within the continuum mechanics framework studied here. 

The characteristic length, velocity and time scales are chosen to be R, U and R / U ,  
respectively. The stress jump is characterized by a capillary number, which represents 
the ratio of viscous to interfacial tension stresses, 

u n . T n d = n . T s - n . T d = o ( v s . n ) n ,  x ~ s  (2.6) 

PU V = - .  
CT 

In geological porous media, V is usually smaller than about 0.01. Here we also consider 
much larger %? which allows for greater drop deformation. For the range of drop 
sizes studied here, the effects of interfacial tension on the dynamics typically become 
saturated for capillary numbers based on the drop size %d = pUa/oR < O(1Op1). 

Flow through the tube is characterized by the flux through the upper branch, Qupper, 

divided by the flux entering the tube from the left, Qupper + Qlower, i.e. 

Qupper 

Qupper + Qlower’ 
Q =  

We will assume that the flow rate through the upper branch is always greater than 
through the lower branch. The dimensionless parameters which characterize the 
problem are summarized in table 1. 

Here we only present results for the specific geometry shown in figure 2. The 
motion of a single particle depends only ‘weakly on the geometry of the bifurcation’ 
(Audet & Olbricht 1987). The effect of changing the relative orientation of the three 
branches on the partitioning of rigid spheres in dilute suspensions is discussed by 
Ditchfield & Olbricht (1995). Similarly, the ‘sharpness’ of the corners of the tube has 
little effect on the flow but will affect the tractions on the tube walls in the vicinity of 
the corners (e.g. Higdon 1985). 
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Stokes equations may be recast as integral equations for the interfacial velocities, 
ud(x) for x E S ,  and the surface tractions, n - T, for x E r . The integral representations 
for the velocity, and associated integral equations for the interfacial velocity and 
surface traction are given by (e.g. Martinez & Udell 1990) 

u,(x), x E suspending fluid, 

LUd(X), X E drop, 
(2.9) 

1 z(1 + A)ud(x), x E s, 

cu,(x), x E r ,  

- l n - K - u , 7  dS, = 

where c is a function of the smoothness of the boundary. J and K are known 
two-dimensional kernels for velocity and stress (e.g. Pozrikidis 1992), 

where y is the integration variable. 
The interfacial velocity along the surface of the drop and the tractions along 

the tube walls are determined by solving equations (2.9) using standard numeri- 
cal collocation procedures. Equations (2.9) are integral equations of the first kind 
for the tractions on the tube walls, and are thus ill-posed; however, following 
previous studies (e.g. Borhan & Mao 1992), rather than reformulating (2.9) as 
equations of the second kind, we simply solve the first-kind equations and verify 
that we do not have sawtooth-type oscillatory solutions. The unknown velocities 
are assumed to vary linearly, and the tractions along the wall are assumed to be 
constant, between collocation points. The singularities in the kernels are subtracted 
and integrated analytically (see Pozrikidis 1992, pp. 178-180). Some care is nec- 
essary near the corners of the tube. Integrations are performed using eight-point 
Gauss-Legendre quadrature. The drop shape is described by cubic splines param- 
eterized in terms of arclength. The drop is represented by 4&80 evenly spaced 
collocation points. The tube walls are represented by 270 collocation points which 
have a higher concentration near corners of the tube. In the numerical calcula- 
tions, the cross-sectional area of the drop changes by up to 1% over the course 
of a complete simulation. Eigenfunction deflation (Pozrikidis 1992, pp. 120-124), 
which would greatly reduce area changes and allow us to consider ,441, was not 
implemented. 

The time-dependent motion of the interface is determined using the kinematic 
condition 

dx 
- = u ( x ) ,  dt 

x E s . (2.1 1) 

Equations (2.1 1) are solved using a second-order Runge-Kutta method. Owing to the 
very large differences between the timescale of interfacial-tension-driven motions for 
%el and the pressure-driven flow, equations (2.11) are stiff, and we are limited to 
considering '3 > 0.01. 

Finally, we note that since the drops studied here are deformable and can thus 
migrate across streamlines, the initial upstream position of the drop will affect their 
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trajectory. Specifically, analytical results for a three-dimensional drop in a two- 
dimensional Poiseuille flow (Chan & Leal 1979) indicate that the drop will migrate 
towards the tube centreline for I I  < 0.5 and I I  > 10, but towards the wall for 
0.5 < A < 10. Numerical calculations by Zhou & Pozrikidis (1994) indicate that drops 
migrate towards the tube centreline for A < O(1-10) depending on the position of 
the drops; otherwise, there appears to be an equilibrium position for no migration. 
Experimental observations (W. L. Olbricht, personal communication) also show that 
moderate-viscosity-ratio three-dimensional drops migrate to an off-axis equilibrium 
position. Thus, in addition to the five parameters listed in table 1, we could introduce 
a second geometrical parameter which describes the initial upstream position of the 
drop. In the simulations presented here, the drops are assumed to be initially circular 
and located approximately 4R upstream from the bifurcation. This assumption is 
made for two reasons: 

(i) The branching tube model (figure 1) simulates the presence of bifurcations in 
a porous material, and for many materials the distance between bifurcations will be 

(ii) The (normalized) timescale for the drop to deform is O(a(1 + A)V/R) which is 
< 0(1) for the calculations presented here, so that the drops deform to their nearly 
steady shape before they have translated more than about one drop radius, and well 
before they reach the bifurcation. The rapid deformation compared to advection is 
most clearly seen in animated videos. 
Since the rate of migration due to deformation is small, the initial upstream position 
has a negligible effect provided the distance from the bifurcation is > O(R). As a 
result, the dynamics can be characterized by a single geometrical parameter describing 
the initial conditions, i.e. d/R. 

3. Results 
The model problem is described by the five dimensionless parameters listed in $2 

and table 1. Here we consider the effects of each of the parameters on the motion 
of a single drop. In figures 3, 4 and 5 we show sequences of drop shapes which 
illustrate the effects of changing the viscosity ratio, capillary number and drop size, 
respectively. In figure 6 we summarize a large of number of calculations of the 
dynamics of a single drop. We characterize the behaviour of the drops (i.e. which 
branch they pass through) by the initial position of the centre of mass of the drop 
which separates trajectories passing through the upper and lower branches. The 
motion of drops of finite size can be compared with the behaviour of a passive tracer 
(i.e. an infinitesimally small drop). 

In figure 3 we show two calculations for the same initial configuration and imposed 
flow, and vary only the viscosity ratio; a / R  = 0.5, Q = 0.75, %? = 0.5 and d / R  = 0.4. 
The drop with I I  = 0.1 (which we will refer to as a bubble) passes through the upper 
branch whereas the drop with I I  = 5 passes through the lower branch. Notice that 
the drops are deformed by the flow (e.g. shapes at t = 2) and as a result can migrate 
from the region of high shear (near the wall) to low shear (near the tube centreline) 
for sufficiently low viscosity ratios (Chan & Leal 1979). The bubble enters the upper 
branch since it translates more rapidly away from the wall and is able to pass around 
the bifurcation. For sufficiently large viscosity ratios, the drop will not migrate away 
from the wall (Zhou & Pozrikidis 1994). The higher-viscosity-ratio drop will also 
move normal to the wall more slowly due to greater lubrication forces associated with 
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\ l 4  \ 
FIGURE 3. Effect of the viscosity ratio: (a)  1 = 5 and ( b )  1 = 0.1; a / R  = 0.5, Q = 0.75, V = 0.5, 

d /R  = 0.4. Times are labelled next to the corresponding drop shape. 

FIGURE 4. Effect of the capillary number: (a) V = 0.1 and (b )  V = 0.5; a / R  = 0.5, Q = 0.7, 1 = 0.1, 
d / R  = 0.3. Times are labelled next to the corresponding drop shape. 

FIGURE 5. Effect of drop size: (a) a / R  = 0.5 and (b)  a / R  = 0.7; 1 = 0.1, Q = 0.6, V = 0.25, d = 0.2. 
Times are labelled next to the corresponding drop shape. 

the small gap between the drop and the wall. For comparison, in figure 6 shown later, 
we will see that passive tracers at positions d / R  > 0.347 will enter the lower branch. 

In figure 4 we show two calculations for the same initial conditions and viscosity 
ratio, and vary only the capillary number; a / R  = 0.5, Q = 0.7, d / R  = 0.3 and 
il = 0.1 (bubble). The % = 0.1 bubble remains nearly spherical, whereas the % = 0.5 
bubble becomes deformed, drifts away from the wall, and can thus pass around the 
bifurcation. For comparison, passive tracers at positions d / R  > 0.273 will enter the 
lower branch. 

In figure 5 we consider the effect of drop size. We show two calculations for different 
bubble sizes but with their centres of mass initially at the same position; Q = 0.6, 
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FIGURE 6. Effect of (a) viscosity ratio, 1, and flow partitioning, Q, ( b )  capillary number, V, and 
(c) drop size, a/R,  on drop behaviour. Dynamics are characterized for a given initial position d / R  
by whether the drop enters the upper branch (open circle), the lower branch (open triangle) or is 
stretched down both downstream branches (star). The dashed curves represent the position of the 
streamline which separates fluid that enters the upper and lower branches in the absence of a drop. 

%? = 0.25, d /R  = 0.2 and i. = 0.1 (bubble). The smaller bubble enters the lower 
branch whereas the larger bubble enters the upper branch. Again, the larger bubble 
can migrate more rapidly owing to its greater deformation (here the capillary number 
is based on the tube radius, not the drop size) and can enter the upper branch; for 
comparison, passive tracers at positions d /R  > 0.134 will enter the lower branch. 

The effects of the different parameters characterizing the motion of a single drop 
are summarized in figure 6. We present the results of nearly 100 simulations to 
determine the initial position of drops which separate trajectories that enter the upper 
and lower branches (referred to hereafter as the critical drop offset). Since most of 
the results presented in figures 3-5 are for I I  = 0.1 we focus on I = 5 in figures 6(&c). 
Simulations in which the drop enters the upper branch are shown with an open 
circle, whereas drops entering the lower branch are denoted by an open triangle. For 
comparison, the position of the streamline separating flow into the upper and lower 
branches in the absence of a drop is shown with a dashed line. 

As illustrated in figure 3, and figure 6(a), as the viscosity ratio I decreases, the 
critical drop offset d/R increases. Thus, bubbles have a particularly strong tendency 
to follow the high-flow-rate pathway. In the numerical calculations for large capillary 
numbers or drop sizes (typically for capillary numbers based on the drop radius 
q d  > 0.3) we observed cases in which the drop is stretched at the bifurcation and 
would be carried down both branches; in a three-dimensional capillary we expect 
that the drop would eventually break up. The flow near the bifurcation resembles 
(qualitatively) an extensional flow and the dynamics of the drops in the vicinity of 
the bifurcation are similar to drops in extensional flows. In particular, for %?d greater 
than some critical value (about 0.3), drops are stretched down both branches for all 
viscosity ratios just as drops are elongated indefinitely in extensional (but not shear) 
flows for %? greater than the critical capillary number (e.g. Stone 1994). 

Finally we note that the drops slow down in the vicinity of the bifurcation, as is 
evident in figures 3-5, since the drop is affected by the competing flows through the 
upper and lower branches which leads to the formation of a stagnation point at the 
bifurcation. The velocity of the drops once they have passed the bifurcation is also 
typically reduced (compared to the free-stream velocity) since the drops end up closer 
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FIGURE 7. Effect of hydrodynamic interactions: (a) d / R  = 0.3 and ( b )  d / R  = k0.2; I = 0.1 (bubble), 
Q = 0.7, = 0.5, a / R  = 0.5. Times are labelled next to the corresponding bubble shape. The 
sequence in (a) should be compared with figure 4(b). 

to a wall. In the next section we will study some of the consequences of the reduction 
in translation speed. 

4. Drop interactions 
The results presented in $3 are relevant to the limit of very dilute suspensions. Here 

we consider the effects of the interactions between two drops on their motion through 
the branched tube. Again we employ the boundary integral method to study the 
problem numerically. Equations (2.9) can be modified in a straightforward manner to 
study the additional drop (e.g. Manga & Stone 1993, Appendix A). Below we present 
two sequences of drop shapes which illustrate qualitatively two different effects of 
drop interactions. 

In figure 7(a) we show a sequence of bubble shapes in which the leading bubble 
(A = 0.1) enters the upper branch whereas the second bubble enters the lower branch. 
For comparison a single bubble with the same initial vertical position enters the upper 
branch (see figure 4b). As the first bubble approaches the bifurcation its translation 
speed is reduced and the second one finds the upper branch partially ‘blocked’ (i.e. the 
second bubble is being pushed by the flow from behind but resisted by the presence 
of the first bubble in the front) and is carried around the first bubble and into the 
lower branch. Ditchfield & Olbricht (1995) have studied experimentally this type of 
phenomenon in more detail and found that for volume fractions of solid particles 
greater than about 2%, hydrodynamic interactions between the suspended particles 
affect their partitioning at bifurcations. 

In the second simulation, presented in figure 7(b),  the trailing bubble is carried 
around the first one as the bubbles pass by the bifurcation. This type of interaction 
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FIGURE 8. Schematic illustration of dead-end pores in (a) granular and 
(b)  fractured porous materials. 

also arises due to the reduction in translation speed of the leading bubble as it 
approaches the bifurcation. For drops smaller than the tube radius, the relative 
positions and orientations of the drops can change as the drops pass bifurcations; 
such motions will increase cross-stream transport from the capillary walls to the 
free stream and vice versa. Thus, the presence of a dispersed phase should enhance 
mixing and reactions between the fluid and porous medium by inducing lateral and 
time-dependent fluid motions. 

5. ‘Cleaning’ porous materials using suspensions 
Many porous media, including granular and fractured materials (see figure 8), 

contain dead-end pores. Contaminants may be contained within the fluid in the pore 
or adsorbed on the surface of the pore. If a clean or desorbing fluid is released into 
the porous material, it will be unable to flow into such dead-end pores, as illustrated 
in figure 9(a) where we show calculated streamlines inside a cavity which represents 
the dead-end pore. Inside the cavity there is a recirculating flow which is isolated 
from the free stream so that transfer into the cavity will be limited by molecular 
diffusion. For a discussion of cavity flows, the reader is referred to Moffatt (1964) 
who studied flow in a corner, and Higdon (1985, 1990) who presented solutions for 
flow over cavities of various shapes and dimensions. 

The presence of a dispersed phase in the porous medium will affect the local flow 
in a time-dependent manner as drops pass over the pore. For example, in figure 9(b) 
we show calculated streamlines as a drop passes over the pore. A comparison of the 
flow in the presence of the drop (figure 9b) with the flow in the absence of the drop 
(figure 9a) illustrates the time-dependence of the cavity flow as the drop passes over 
the cavity. Thus, the motion of the drop allows fluid transfer between the free stream 
and the dead-end pore.? 

The effect of different characteristics of the dispersed phase on the amount of 
transfer between the free stream and dead-end pore is illustrated in figure 10. In 
order to quantify the ‘cleaning’ process, we calculate the advection of the (numerically 

t The idea of using suspensions to clean ‘dead-end’ pores is attributed to discussions with 
H. A. Stone from Harvard University. 
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FIGURE 9. Calculated streamlines (a) in the absence of a drop and ( b )  when the drop (2  = 1 and 
9 = 0.5) is above the dead-end pore. The disturbance created by the drop results in a flow which 
depends on the position of the drop and thus allows fluid transfer between the pore and free stream. 

(a> (b) (4 
0.04 t 

~ 0.03 

5 
0.02 

lo-' 1 00 10' 

2 

0'04 [ 
0.03 

0.02 

10-1 1 00 

0.04 

0.03 

0.02 v = 0.5 

0.4 0.6 0.8 

a/R 
FIGURE 10. The effect of (a) viscosity ratio, 1, ( b )  capillary number, W, and (c) drop size, a/R,  on 

the area (normalized by R 2 )  of fluid transferred between the pore and the free stream. 

calculated) material line which initially separates the fluid trapped in the 'dead-end' 
pore from fluid in the free stream (see figure 9a). Once the drop has passed over 
the pore we calculate the area of fluid which has been entrained into the pore. In 
figure 10 we show the area of fluid transferred as a function of the viscosity ratio, 
capillary number and drop size. As expected, drops with high viscosity ratios, small 
capillary numbers and large sizes are more effective at cleaning the pore since they 
have a larger effect on the disturbance flow. Since fluid velocities inside the pore are 
much smaller than the free-stream velocities (typically one or two orders of magnitude 
smaller), the area of fluid entrained into the pore is only a few percent of the area 
of the drop so that cleaning a pore would require hundreds of drops. Nevertheless, 
transport induced by drops is likely to be more effective than molecular diffusion 
alone which limits transfer in the absence of a dispersed phase. 

6. Summary 
The extension of the pore-scale results presented here to the determination of 

macroscopic physical properties is not straightforward. In particular, we are limited 
by the two-dimensional geometry assumed in the calculations, the simplification of the 
pore geometry, and the constant-flow-rate (as opposed to constant-pressure) boundary 
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conditions. We have also only considered the limit in which the undeformed diameter 
of the drop is less than the tube diameter. Nevertheless, in this summary we attempt 
to qualitatively relate the results presented in 933 and 4 to macroscopic quantities. 

mechanical 
spreading) by the likelihood of the drop entering the lower-flow-rate channel, then we 
infer based on the results presented in 93 that dispersion decreases as drop viscosity 
ratio decreases, as the capillary number increases and as the drop size increases. 
The results presented in $3 show that the suspended phase has a strong tendency 
to follow high-flow-rate channels. Thus, the presence of a dispersed phase in a 
heterogeneous porous material will change the distribution of ‘effective’ permeability 
due to spatially varying concentrations of the dispersed phase. Specifically, we expect 
that the concentration of the dispersed into high-flow-rate channels (regions with high 
permeabilities) will decrease the effective permeability of such regions. 

From the two-drop simulations we infer that mechanical dispersion increases as the 
concentration of the dispersed phase increases owing to the interactions between the 
drops near the bifurcation. The results presented in 94 also suggest that the presence 
of a dispersed phase should enhance mixing and diffusive transfer between the walls 
and suspending fluid by inducing lateral and time-dependent fluid motions. 

Finally, we demonstrated that the motion of a drop over a ‘dead-end’ pore allows 
fluid transfer between the pore and free stream and thus the use of suspensions may 
improve the efficiency of cleaning porous materials. An experimental study of such 
cleaning processes is being developed currently. The effects of a dispersed phase on 
fluid transfer between the free stream and the cavity may have applications to related 
problems, for example flow over rough reacting surfaces, in which reaction products 
and byproducts may trapped inside cavities on the surface. 

Work supported by the Miller Institute for Basic Research in Science and IGPP at 
Los Alamos National Lab. Comments and discussions with H.A. Stone were valuable. 

If we can characterize the dispersion of the dispersed phase (is.  
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